\qquad Date: \qquad Period: \qquad

Newton's Laws Activity

Directions: Mark each of the following situations as an example of Newton's First ($1^{\text {st }}$), Second $\left(2^{\text {nd }}\right)$ or Third $\left(3^{\text {rd }}\right)$ Law on the blank before the number. Then explain in complete sentences how the situation is an example of that particular law.

1. A magician pulls a tablecloth out from under dishes and glasses on a table without disturbing them.

Law:	Explanation:

2. A person's body is thrown outward as a car rounds a curve on a highway.

Law:	Explanation:

3. Rockets are launched into space using jet propulsion where exhaust accelerates out from the rocket and the rocket accelerates in an opposite direction.

Law:	Explanation:

4. A picture is hanging on a wall and does not move.

Law:	Explanation:

5. A person not wearing a seatbelt flies through a car window when someone slams on the breaks because the person's body wants to remain in continuous motion even when the car stops.

Law:	Explanation:

6. Pushing a child on a swing is easier than pushing an adult on the same swing, because the adult has more inertia.

Law:	Explanation:

7. A soccer ball accelerates more than a bowling ball when thrown with the same force.

Law:	Explanation:

8. A soccer player kicks a ball with their foot and their toes are left stinging.

Law:	Explanation:

9. A student leaves a pencil on a desk and the pencil stays in the same spot until another student picks it up.

Law:	Explanation:

10. Two students are in a baseball game. The first student hits a ball very hard and it has a greater acceleration than the second student who bunts the ball lightly.

Law:	Explanation:

\qquad Date: \qquad Period: \qquad
Directions: Use the force and acceleration formulas to answer the following questions. Be sure to show your work.
11. How much force is needed to accelerate a 68 kilogram-skier at a rate of $1.2 \mathrm{~m} / \mathrm{sec} 2$?
12. The Space Shuttle has a liftoff mass of $2,041,000 \mathrm{~kg}$ and accelerates at a rate of $16 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the force (thrust) that is accelerating the Space Shuttle.
13. A runner has a mass of 89 kilograms. He produces a force of 84 Newtons between the ground and his running shoes. How fast does he accelerate?
14. Calculate the acceleration of a car if the force on the car is 450 Newtons and the mass is 1300 kilograms.
15. A rocket accelerates at $56 \mathrm{~m} / \mathrm{s}^{2}$. It has a mass of $800,000 \mathrm{~kg}$. Calculate the force (thrust) that the rocket engines must supply.
16. Find the acceleration of the 2 kg block in the following diagram.

Describe what each of the following lines represent.
17. $A B$: \qquad
18. BC: \qquad
19. CD: \qquad

